Valueerror: nattype does not support strftime

Error: ValueError: nattype does not support strftime

Explanation:

The error message “ValueError: nattype does not support strftime” occurs when you try to use the strftime() method on a pandas Series or Dataframe column that has missing values (NaT – Not a Time).

The strftime() method is used to convert a datetime object to a string format based on a specific format string. However, NaT is not a valid datetime object, so it does not support the strftime() method.

Example:

        
            import pandas as pd

            # Create a DataFrame with a column containing NaT
            df = pd.DataFrame({'Date': [pd.Timestamp('2021-01-01'), pd.NaT, pd.Timestamp('2021-01-03')]})

            # Try to use strftime() on the 'Date' column
            df['Formatted Date'] = df['Date'].strftime('%Y-%m-%d')
        
    

Output:

        
            ValueError: nattype does not support strftime
        
    

To avoid this error, you can check for missing values before applying the strftime() method. You can use the `pd.isnull()` function to check for missing values in a pandas Series or Dataframe column.

Example:

        
            import pandas as pd

            # Create a DataFrame with a column containing NaT
            df = pd.DataFrame({'Date': [pd.Timestamp('2021-01-01'), pd.NaT, pd.Timestamp('2021-01-03')]})

            # Apply strftime() only on non-missing values
            df.loc[~pd.isnull(df['Date']), 'Formatted Date'] = df.loc[~pd.isnull(df['Date']), 'Date'].dt.strftime('%Y-%m-%d')
            
            # Output:
            print(df)

            # Alternative approach: Using fillna to replace NaT with a default value
            df['Formatted Date'] = df['Date'].fillna(pd.Timestamp('1970-01-01')).dt.strftime('%Y-%m-%d')
        
    

Output:

        
                      Date Formatted Date
            0 2021-01-01      2021-01-01
            1        NaT             NaN
            2 2021-01-03      2021-01-03
        
    

In the above example, we checked for missing values using `~pd.isnull(df[‘Date’])` and applied strftime() only on the non-missing values.
Alternatively, we used the fillna() method to replace NaT with a default value (in this case, ‘1970-01-01’) before applying strftime().

Related Post

Leave a comment