The error message “TypeError: cannot concatenate object of type ‘numpy.ndarray’; only series and dataframe objects are valid” occurs when you try to concatenate a numpy array with another numpy array, series, or dataframe. Numpy arrays cannot be concatenated directly.
To resolve this error and perform concatenation, you need to convert the numpy array into a pandas series or dataframe first. Here are a few examples to illustrate the solution:
Example 1: Concatenating Two Pandas Series
import pandas as pd
import numpy as np
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])
series1 = pd.Series(array1)
series2 = pd.Series(array2)
concatenated_series = pd.concat([series1, series2])
print(concatenated_series)
In this example, we create two numpy arrays array1
and array2
. We then convert these arrays into pandas series series1
and series2
respectively using pd.Series()
. Finally, we concatenate these two series using pd.concat()
and store the result in concatenated_series
.
Example 2: Concatenating Numpy Array and Pandas DataFrame
import pandas as pd
import numpy as np
array1 = np.array([1, 2, 3])
dataframe1 = pd.DataFrame({'A': array1})
array2 = np.array([4, 5, 6])
dataframe2 = pd.DataFrame({'B': array2})
concatenated_dataframe = pd.concat([dataframe1, dataframe2])
print(concatenated_dataframe)
In this example, we create two numpy arrays array1
and array2
. We then convert these arrays into pandas dataframes dataframe1
and dataframe2
respectively. Finally, we concatenate these dataframes using pd.concat()
and store the result in concatenated_dataframe
.
Related Post
- Uselocation() may be used only in the context of a
component. - Unexpected text node: . a text node cannot be a child of a
. - Importerror: cannot import name ‘plot_confusion_matrix’ from ‘sklearn.metrics’
- Typeerror [err_invalid_arg_type]: the “chunk” argument must be of type string or an instance of buffer or uint8array. received undefined