To replace special characters in a column using regular expressions in PySpark, you can use the regexp_replace
function. regexp_replace
allows you to specify a column, a regular expression pattern, and a replacement string.
Here’s an example:
from pyspark.sql import SparkSession
from pyspark.sql.functions import regexp_replace
# Create a Spark session
spark = SparkSession.builder.getOrCreate()
# Sample data
data = [("John!Doe",), ("Jane@Doe",), ("John*Doe",)]
# Create a DataFrame
df = spark.createDataFrame(data, ["name"])
# Replace special characters in the "name" column
df = df.withColumn("name", regexp_replace("name", "[!@*]", ""))
# Show the updated DataFrame
df.show()
This code snippet creates a Spark session, sets up some sample data with special characters in the “name” column, and then uses regexp_replace
to remove the special characters by specifying the regular expression pattern [!@*]
(which matches any occurrence of !
, @
, or *
) and the replacement string ""
(which is an empty string).
The above code will output:
+------+
| name|
+------+
|JohnDoe|
|JaneDoe|
|JohnDoe|
+------+
In this example, the special characters !
, @
, and *
are removed from the “name” column using regexp_replace
.