Pandas Bar Plot – Color by Column
To create a bar plot in Pandas and color the bars based on the values of a specific column, you can use the `plot.bar()` method and pass the `color` parameter with the name of the column you want to use for coloring.
Example
Let’s assume you have a DataFrame named `df` with the following data:
import pandas as pd
data = {'Category': ['A', 'B', 'C', 'D'],
'Value': [10, 15, 7, 12],
'Color': ['red', 'blue', 'green', 'yellow']}
df = pd.DataFrame(data)
This DataFrame has three columns: `Category`, `Value`, and `Color`. You want to plot a bar chart where bars are colored based on the `Color` column.
Here is how you can achieve this:
import matplotlib.pyplot as plt
df.plot.bar(x='Category', y='Value', color='Color')
plt.show()
In this example, we specify the `x` and `y` parameters as `’Category’` and `’Value’` respectively, to determine the data for the x-axis and y-axis. The `color` parameter is set to `’Color’` to indicate that the bars should be colored based on the values in the `Color` column of the DataFrame.
When you run this code, you will get a bar plot with bars colored according to the values in the `Color` column.
- Pageablehandlermethodargumentresolvercustomizer
- Package “@ionic/angular-toolkit” has no builders defined.
- Pages must fill the whole viewpager2 (use match_parent)
- Package expo.modules does not exist
- P1001: can’t reach database server at
- Pandas ‘series’ object has no attribute ‘columns’
- Pandas add column with repeated value
- Display nested JSON data in HTML table using JavaScript dynamically
- Pandas average every n rows