0👍
I figured out using x axis type: linear;
and removed the date functionality and just used the raw millisecond data in x
rather than t
.
See working example below.
var ctx = document.getElementById('log_chart').getContext('2d');
var myChart = new Chart(ctx, {
type: 'line',
data: {
datasets: [{
label: 'Engine Speed',
backgroundColor: '#ff0000',
borderColor: '#ff0000',
fill: false,
data: [{
x: 0.37,
y: 2640
}, {
x: 0.85,
y: 2560
}, {
x: 1.33,
y: 2560
}, {
x: 1.78,
y: 2560
}, {
x: 2.23,
y: 2680
}, {
x: 2.7,
y: 2920
}, {
x: 3.16,
y: 3200
}, {
x: 3.63,
y: 3520
}]
}, {
label: 'Mass Air Flow - Sensor',
backgroundColor: '#00FFFF',
borderColor: '#00FFFF',
fill: false,
data: [{
x: 0.02,
y: 19.58
}, {
x: 0.45,
y: 16.28
}, {
x: 0.92,
y: 8.56
}, {
x: 1.39,
y: 8.47
}, {
x: 1.86,
y: 23.36
}, {
x: 2.33,
y: 45.78
}, {
x: 2.78,
y: 56.03
}, {
x: 3.23,
y: 62.36
}]
}],
},
options: {
responsive: true,
title: {
display: true,
text: "Chart.js Time Scale"
},
scales: {
xAxes: [{
type: 'linear',
position: 'bottom'
}]
}
}
});
<script src="https://cdn.jsdelivr.net/npm/chart.js@2.8.0/dist/Chart.min.js"></script>
<div class="container">
<div class="col-12 mt-3 mb-3">
<canvas id="log_chart" width="600" height="200"></canvas>
</div>
</div>
1👍
I think you need to provide more information to Chart.js so that it knows what to do with the X-Axis. On previous projects, I’ve given a labels
property within the data.
Example –
// document ready
(function ($) {
var ctx = document.getElementById('log_chart').getContext('2d');
var myChart = new Chart(ctx, {
type: 'line',
data: {
labels: [1, 2, 3, 4, 5, 6, 7, 8],
datasets: [
{
label: 'Engine Speed',
backgroundColor: '#ff0000',
borderColor: '#ff0000',
fill: false,
data: [2640,2560,2560,2560, 2680, 2920, 3200, 3520]
},
{
label: 'Mass Air Flow - Sensor',
backgroundColor: '#00FFFF',
borderColor: '#00FFFF',
fill: false,
data: [19.58, 16.28, 8.56, 8.47, 23.36, 45.78, 56.03, 62.36]
}
],
},
options: {
scales: {
yAxes: [{
stacked: false
}],
}
}
});
})(jQuery);
So the labels
property can then fill your X axis, and your data sets just plot the raw data onto the graph. The problem you’ll run into with this kind of dataset is that the sensors readings are significantly lower than the engine speed, so not well represented on the chart. You’ll have to work out some kind of way of normalising this data so it can be properly represented, e.g. adding a multiply to the mass airflow sensor readings.